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Abstract. We present a method which when applied to certain non-convex QP will locate the global
minimum, all isolated local minima and some of the non-isolated local minima. The method proceeds
by formulating a (multi) parametric convex QP in terms of the data of the given non-convex QP.
Based on the solution of the parametric QP, an unconstrained minimization problem is formulated.
This problem is piece-wise quadratic. A key result is that the isolated local minimizers (including the
global minimizer) of the original non-convex problem are in one-to-one correspondence with those
of the derived unconstrained problem.

The theory is illustrated with several numerical examples. A numerical procedure is developed
for a special class of non-convex QP’s. It is applied to a problem from the literature and verifies a
known global optimum and in addition, locates a previously unknown local minimum.

Key words: Global optimization, parametric quadratic programming, non-convex quadratic program.

1. Introduction

Here we consider the model non-convex quadratic programming problem

QP minfc0x+ 1
2x
0Cx+ x0DQ0x j Ax � bg;

where c 2 En, b 2 Em, A is an m� n-matrix, D and Q are n� k-matrices, C is
a symmetric n� n positive semi-definite matrix, k < n and x 2 En is a variable.
Corresponding to QP, we consider the parametric quadratic program:

QP(t) minfc0x+ 1
2x
0Cx+ t0Q0x j Ax � b;D0x = tg;

where t is a parameter in Ek. LetR and R(t) be feasible regions for QP and QP(t),
respectively. Let arg minfQP(t)g denote the set of all optimal solutions for QP(t).
Finally, we formulate

NP minff(t) j t 2 Ek
g;

where

f(t) =

�
inf fc0x+ 1

2x
0Cx+ t0Q0x j x 2 R(t)g; if R(t) 6= �;

+1; otherwise:
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The non-convexity of the objective function of QP stems from the termx0DQ0x.
One might question the generality of this model and suggest that the term be written
as x0Hx, where H is a more general symmetric matrix, perhaps satisfying some
properties. This situation has been analyzed by the authors in a companion paper,
Best and Ding (1996), where it is shown that for any symmetric matrix H having
full rank, there exist n � k-matrices Q and D satisfying H = 1

2 [DQ
0 + QD0]

(and so x0Hx = x0DQ0x) if and only if H has at least two nonzero eigenvalues
of opposite sign. In addition, when the required condition is satisfied a method to
construct such D and Q is given. For the purposes of this paper, we will assume
that D and Q are already available.

We note that, in general, the problem of checking isolated local optimality is
NP-hard, See Murty and Kabadi (1987), and, Pardalos and Schnitger (1988).

We will organize this paper as follows. In Section 2, we will develop the
relationships between QP, QP(t) and NP. In particular, we will establish the one-to-
one correspondence between isolated local minimizers of QP and NP. In Section 3,
we will specialize these results to the class of non-convex quadratic programs with
a Hessian which has exactly one negative eigenvalue. We will give an algorithm
that can not only find a global minimizer, but can also find all isolated minimizers
and some non-isolated local minimizers.

2. The Relationships between QP, QP(t) and NP

We begin this section with a small example problem which will illustrate the critical
relationship between QP and NP.

EXAMPLE 2.1.

QP
minimize : x1x2

subject to : x1 � 0:5; 22x1 + 8x2 � 27;
8x1 + 22x2 � 27; x2 � 0:5:

Here, C = 0, n = 2 and we may take D = (1; 0)0 and Q = (0; 1)0. QP(t) can be
written as

QP(t)

minimize : tx2

subject to : x1 � 0:5; 22x1 + 8x2 � 27;
8x1 + 22x2 � 27; x2 � 0:5;
x1 = t:

The solution of QP(t) is a piece-wise linear function of t and is summarized in
Table 2.1.

Examination of QP(t) with Table 2.1 gives f(t):

f(t) =

8<
:
t(27� 22t)=8; if 0:5 � t � 0:9;
t(27� 8t)=22; if 0:9 � t � 2;
t=2; if t � 2:
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Table 2.1. Optimal Solution for QP(t) for Example 2.1.

t < 0:5 0:5 � t � 0:9 0:9 � t � 2: t � 2:

no
feasible
solution

�
0

27
8

�
+ t

�
1

� 22
8

� �
0

27
22

�
+ t

�
1

� 8
22

� �
0
1
2

�
+ t

�
1
0

�

Figure 2.1. (a) Example 2.1. (b) f(t) for Example 2.1.

Example 2.1 is illustrated in Figures 2.1(a) and (b). Figure 2.1(a) shows the given
non-convex problem. The feasible region is shown as the shaded area. The level set
x1x2 = 0:81 is shown with a broken line. It is clear from the figure that there are
local minima at (0:5; 2)0 and (2; 0:5)0 and the global minimum occurs at (0:9; 0:9)0.
Figure 2.1(b) shows f(t), a piece-wise quadratic function which by inspection, has
isolated local minima at t = 0:5, and 2 and a global minimum at t = 0:9. Using
Table 2.1, we see that arg minfQP(0:5)g = (0:5; 2)0 , arg minfQP(2)g = (2; 0:5)0

and arg minfQP(0:9)g = (0:9; 0:9)0. Thus, the local (global) minima of QP and
f(t) are in one-to-one correspondence for this example. Also note that f(t) is a
piece-wise quadratic function of a single variable and so it is straightforward to
obtain its local and global minimizers.

Notice that in Example 2.1, the local minimizers for both QP and NP are isolated.
The requirement that the local minimizers of QP be isolated is key in obtaining
the one-to-one correspondence between such points of QP and NP. The final result
will be formulated in Theorem 2.4 and will be a consequence of Theorems 2.1 -
2.3, following.

THEOREM 2.1. Let t� be a local minimizer for NP with f(t�) > �1. Then any
x� 2 arg minfQP(t�)g is a local minimizer for QP.

Proof. Since t� is a local minimizer for NP, there exists a � > 0 such that

f(t) � f(t�) for any t 2 B�(t
�); (2.1)
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whereB�(t
�) = ft 2 Ek j kt� t�k � �g. Now assume to the contrary, that there is

an x� 2 arg minfQP(t�)g which is not a local minimizer for QP. Then there exists
a sequence fxig such that

c0xi + 1
2(x

i)0Cxi + (xi)0DQ0xi < c0x� + 1
2(x

�)0Cx� + (t�)0Q0x�;

where Axi � b, and xi ! x�. Since x� 2 arg minfQP(t�)g,

f(t�) = c0x� + 1
2 (x

�)0Cx� + (t�)0Q0x�:

Hence

c0xi + 1
2(x

i)0Cxi + (xi)0DQ0xi < f(t�): (2.2)

Since xi ! x�, D0xi ! D0x� = t�. Thus, there is an M > 0 such that

D0xi 2 B�(t
�); whenever i > M: (2.3)

Let ti = D0xi for i > M . Then

f(ti) = inffc0x+ 1
2x
0Cx+ (ti)0Q0x j Ax � b;D0x = tig

� c0xi + 1
2 (x

i)0Cxi + (ti)0Q0xi (since Axi � b;D0xi = ti)

= c0xi + 1
2 (x

i)0Cxi + (xi)0DQ0xi < f(t�) (from (2.2)):

But from (2.1) and (2.3), we have f(ti) � f(t�), a contradiction. The assumption
that there is an x� 2 arg minfQP(t�)g which is not a local minimizer for QP
leads to a contradiction and is therefore false. The proof of the theorem is thus
complete. 2

If t� is an isolated local minimizer of f on Ek, we have the following further result.

THEOREM 2.2. If t� is an isolated local minimizer for f on Ek with f(t�) > �1

and arg minfQP(t�)g is the singleton point fx�g, then x� is an isolated local
minimizer for QP.

Proof. From Theorem 2.1, x� is a local minimizer for QP. If x� is not an isolated
local minimizer for QP, there exist a sequence fxig � R, xi ! x� and xi 6= x� for
all i such that c0xi+ 1

2(x
i)0Cxi+(xi)0DQ0xi = c0x�+ 1

2(x
�)0Cx�+(x�)0DQ0x�.

Let ti = D0xi. Then ti ! t� and f(ti) � f(t�). Since arg minfQP(t�)g = fx�g

and xi 6= x� for all i, ti 6= t� for all i. This contradicts that t� is an isolated local
minimizer for NP. The proof of the theorem is thus complete. 2

Theorem 2.2 is illustrated in Example 2.1 where each of the three local minimizers
for f(t) are isolated, their corresponding sets, arg minfQP(t)g, are singletons and
each such point is an isolated local minimizer for QP. The following example
illustrates Theorem 2.1 and in addition, shows that the condition arg minfQP(t�)g
be a single point cannot, in general, be removed from Theorem 2.2.
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EXAMPLE 2.2.

QP minf� 1
4x1 �

1
2x2 + x1x2 j x1 �

1
2 ;

3
8 � x2 �

1
2g:

Here we take C = 0, n = 2, D = (1; 0)0 and Q = (0; 1)0. Then D0x = x1,
Q0x = x2 and QP(t) becomes

QP(t) minf�
1
4
t+ (t� 1

2)x2) j t �
1
2 ;

3
8 � x2 �

1
2 g;

from which f(t) is derived as:

f(t) =

� 1
8t�

3
16 ; if t � 1

2 ;

+1; otherwise.

The situation is illustrated in Figures 2.2(a) and 2.2(b). The feasible region for
QP is shown as the shaded area in Figure 2.2(a). It is clear that t� = 1

2 is an isolated
local minimizer for f on E1. Indeed, it is also the global minimizer. See Figure
2.2(b). However, arg minfQP(t�)g = f(1

2 ; x2)
0 j 3

8 � x2 �
1
2g and by Theorem

2.1, each one of these points is a local (indeed, global) minimizer for QP. These are
shown by the darkened line in Figure 2.2(a). Clearly, none of the local minimizers
for QP are isolated. Thus the condition arg minfQP(t�)g be a singleton is necessary
in Theorem 2.2.

Figure 2.2. (a) Example 2.2. (b) f(t) for Example 2.2.

EXAMPLE 2.3.

QP minf�1
4x1 �

1
2x2 + x1x2 j x1 �

1
2 ; 0 � x2 �

1
2g:

Here we take C = 0, n = 2, D = (1; 0)0 and Q = (0; 1)0, Then D0x = x1,
Q0x = x2 and QP(t) becomes

QP(t) minf�1
4t + (t � 1

2)x2 j t �
1
2 ; 0 � x2 �

1
2g;

from which f(t) is derived as:

f(t) =

�
�1

4t; if t � 1
2 ;

+1; otherwise.
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Figure 2.3. (a) Example 2.3. (b) f(t) for Example 2.3.

The situation is illustrated in Figures 2.3(a) and 2.3(b).
Observe that

arg minfQP(1
2)g = f (1

2 ; x2)
0 j 0 � x2 �

1
2g;

and for t > 1
2 , arg minfQP(t)g = (t; 0)0. Also observe that f(1

2 ; x2)
0 j 1

4 < x2 �
1
2g are local optimal solutions for QP. In particular, x� = (1

2 ;
1
2)
0 is a local optimizer

for QP but t� = D0x� = 1
2 is not a local minimizer for f on E1. Indeed f does not

possess a local minimizer on E1.
Example 2.3 shows that a one-to-one correspondence between local minima

of QP and f(t) will not hold without some restrictions. The key requirement in
establishing the correspondence is that corresponding local minimizers for QP,
QP(t) and f(t) should each be isolated. This will be established subsequently.
First we need the following lemma.

LEMMA 2.1. Let x� be an isolated local minimizer for QP and let t� = D0x�. Let
ftig be any sequence with ti ! t� and let xi 2 arg minfQP(ti)g. If there exists an
M > 0 such that f(ti) �M for all i, then fxig is bounded.

Proof. Since x� is an isolated local minimizer for QP, there exists a � > 0 such
that

c0x� + 1
2(x

�)0Cx� + (x�)0DQ0x� < c0x+ 1
2x
0Cx+ x0DQ0x (2.4)

for any x 2 (B�(x
�)
T
R) n fx�g. So,

c0x� + 1
2(x

�)0Cx� + (t�)0Q0x� < c0x+ 1
2x
0Cx+ (t�)0Q0x

for any x 2 (B�(x
�)
T
R(t�)) n fx�g. Since c0x + 1

2x
0Cx + (t�)0Q0x is convex,

we have

c0x� + 1
2(x

�)0Cx� + (t�)0Q0x� < c0x+ 1
2x
0Cx+ (t�)0Q0x (2.5)

for any x 2 R(t�)nfx�g. Hence arg minfQP(t�)g = fx�g. This implies that there
does not exist a nonzero vector s satisfying the following conditions

As � 0; D0s = 0; (2.6)

(c+Qt�)0s � 0; (2.7)
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Cs = 0: (2.8)

By Theorem 2.1 of Best and Ding (1995), f is lower semi-continuous at t�.
Therefore for any  > 0 there exists an � > 0 such that f(t) � f(t�)�  for any
t 2 B�(t

�). Since ti ! t�, there exists an N > 0 such that ti 2 B�(t
�) for all

i � N . So,

f(t�)�  � f(ti) �M (2.9)

for all i � N . Now assume that on the contrary, fxig is unbounded, then fxi=kxikg
has a convergent subsequence. Without loss of generality, let

lim
i!1

xi

kxik
= s and lim

i!1
kxik = +1: (2.10)

From f(ti) = c0xi + 1
2 (x

i)0Cxi + (ti)0Q0xi, (2.9) and (2.10), we have

1
2s
0Cs = limi!1

f(ti)
kxik2 = 0

and

(c+Qt�)0s+ lim
i!1

(xi)0Cxi

2kxik
= lim

i!1

f(ti)

kxik
= 0;

i.e.;

Cs = 0 and (c+Qt�)0s = � lim
i!1

(xi)0Cxi

2kxik
� 0:

From Axi � b and D0xi = ti, we have As � 0 and D0s = 0. Thus we have
exhibited a non-zero s satisfying (2.6)-(2.8). This is a contradiction and the proof
of the lemma is complete. 2

THEOREM 2.3. If x� is an isolated local minimizer for QP, then t� = D0x� is
an isolated local minimizer for NP, f(t�) = c0x�+1

2(x
�)0Cx�+ (t�)0Q0x� and

arg minfQP(t�)g = fx�g.
Proof. As the proof of Lemma 2.1, we have (2.4), (2.5) and f(t) � f(t�) � 

for any t 2 B�(t
�). Thus,

f(t�) = c0x� + 1
2(x

�)0Cx� + (t�)0Q0x� and arg minfQP(t�)g = fx�g:

Now assume to the contrary, that t� is not an isolated local minimizer for NP. Then
there exist two sequences fxig and ftig with ti = D0xi, ti ! t�, ti 2 B�(t

�) and
xi 2 R n B�(x

�) such that

c0xi + 1
2(x

i)0Cxi + (ti)0Q0xi = f(ti) � f(t�):
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By Lemma 2.1, fxig is bounded, so there exists a convergent subsequence. Without
loss of generality, let xi ! x0. Then x0 6= x�, t� = D0x0, Ax0 � b and

c0x0 + 1
2(x

0)0Cx0 + (t�)0Q0x0 � f(t�):

This contradicts (2.5). The proof of the theorem is thus complete. 2

Combining Theorem 2.2 and Theorem 2.3, we have the following result.

THEOREM 2.4. A point x� is an isolated local minimizer for QP if and only if
t� = D0x� is an isolated local minimizer of NP, f(t�) = c0x� + 1

2(x
�)0Cx�+

(t�)0Q0x� and arg minfQP(t�)g = fx�g.

REMARK 2.1. From Theorem 2.1 and Theorem 2.4, we know that f will keep all
of the critical information concerning isolated local minimizers of QP and some of
the local minimizers of QP. Thus if we can locate all local minimizers of f we will
obtain all isolated local minimizers and some local minimizers of QP.

Although the one-to-one correspondence between local minimizers of QP and
NP requires the condition of isolated local minima, this condition is not required
for global minima as given in Theorem 2.5 below. The proof of this result can be
obtained from definitions directly.

THEOREM 2.5. A point t� 2 Ek with f(t�) > �1 is a global minimizer of
NP if and only if QP has a global minimizer x� such that D0x� = t�, f(t�) =

c0x� + 1
2(x

�)0 Cx� + (t�)0Qx�.

We complete this section by showing how to recognize whether a local minimizer
is an isolated local minimizer. Suppose that we know t� is an isolated local min-
imizer and we want to know whether corresponding point x� is also an isolated
local minimizer. In doing so, we need only verify that arg minfQP(t�)g = fx�g. If
C is positive definite, then QP(t) is strictly convex. In this case, x� is necessarily
uniquely determined and consequently arg minfQP(t�)g = fx�g. Otherwise, since
QP(t�) is convex, we may assume that x� is computed by some quadratic program-
ming algorithm and (u; v) = (u1; � � � ; um; v1; � � � ; vk) is the associated vector of
multipliers, where u and v correspondAx � b andD0x = t�, respectively. Now by
Theorem 4.14 of Best and Ritter (to appear), arg minfQP(t�)g can be represented
by the set of x which satisfy

D0x = t�; Cx = Cx�;

a0ix = bi; for all i with 1 � i � m; and ui > 0;
a0ix � bi; for all i with 1 � i � m; and ui = 0:

9=
; (2.11)

Let I = fi j 1 � i � m; a0ix
� = big and AI be a sub matrix of A induced by

i-th row of A for i 2 I . If rank([D;C;A0I ]) < n, then arg minfQP(t�)g is not
a singleton, i.e.; x� is not an isolated local minimizer. In this case, an alternative
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local minimizer can be computed easily from the null space of [D;C;A0I ]
0. In fact,

for any y 2 En, if [D;C;A0I ]
0y = 0 with y 6= 0, there is a nonzero number �

such that x� + �y satisfies (2.11), i.e.; x� + �y is an alternate local minimizer.
If rank([D;C;A0I ]) = n, we need to consider the following linear programming
problem:

� = min

(X
i2I

ai
0x j (2:11)

)
:

If � =
P

i2I bi then arg minfQP(t�)g is a singleton, and x� is an isolated local
minimizer. Otherwise, x� is not an isolated local minimizer and an optimal solution
of the linear programming problem is an alternative local minimizer.

In next section, we are going to discuss some applications of the results estab-
lished in this section.

3. The Case of a Single Negative Eigenvalue (k = 1)

In this section we consider our model problem with D and Q being n-dimensional
vectors; i.e., k = 1. To emphasize this we replace D and Q with d and q, respec-
tively. The model problem QP and the derived problems QP(t) and NP become

QP1 minfc0x+ 1
2x
0Cx+ (d0x)(q0x) j Ax � bg;

where c 2 En, b 2 Em, A is an m � n-matrix, d and q 2 En, C is a symmetric
n� n positive semi-definite matrix, and x 2 En. QP(t) becomes

QP1(t) minfc0x+ 1
2x
0Cx+ tq0x j Ax � b; d0x = tg;

where t is a scalar parameter. Let R1 and R1(t) be feasible regions for QP1 and
QP1(t), respectively. Let arg minfQP1(t)g denote the set of all optimal solutions
for QP1(t). Finally, we formulate

NP1 minff1(t) j t 2 E1
g;

where

f1(t) =

�
inf fc0x+ 1

2x
0Cx+ tq0x j x 2 R1(t)g; if R1(t) 6= �;

+1; otherwise;

and we have used the subscript "1" throughout the above to emphasize that k = 1.
If QP1 were written with a more general Hessian matrix H , rather than C +

1
2(dq

0 + qd0) then the resulting problem could be transformed into one having a
Hessian matrix of the latter form provided H had exactly one negative eigenvalue
(hence the title of this section). Details of this transformation are given in Best and
Ding (1996).

The problem QP1 has been shown to be NP-hard by Pardalos and Vavasis
(1991). Konno et al. (1991) proposed a solution method for a variation of QP1 for



86 M. J. BEST AND B. DING

which the constraints were equalities and non-negativity constraints. The method
used a parametric form of the simplex algorithm and was designed solely to find
a global minimizer. In this section, we will also develop a method to solve QP1.
However, in contrast to the method of Konno, our method will locate a global
minimizer (if one exists), all isolated local minimizers and some non-isolated local
minimizers. Indeed, even if QP1 does not possess a global minimizer our method
will locate all isolated local minimizers and some non-isolated local minimizers.
Moreover, we will show that isolated local minimizers can be distinguished from
non-isolated local minimizers by solving a linear programming problem.

Note that QP1(t) is a convex parametric quadratic programming problem, with
the parameter being a scalar. Note also that the parameter t occurs in both the
linear part of the objective function as well as the right hand-side of a constraint.
QP1(t) must be solved for all possible t. An appropriate method to use is that of
Best (1996). Best’s method allows explicitly for a parameter in both the linear part
of the objective function and the right hand-side of the constraints. Also, it allows
for the possibility that the Hessian of the parametric QP is positive semi-definite,
rather than just positive definite. In addition, it supplies critical information as to
the status of QP1(t) at the end points of the parametric interval.

Applying Best’s method to QP1(t) will produce numbers t0; t1; � � � ; t� and
n-vectors h0i; h1i; i = 1; . . . ; � satisfying

xi(t) = h0i + th1i (3.1)

is optimal for QP1(t) for all t with ti�1 � t � ti and for all i = 1; . . . �. It is
possible to have t0 = �1 and/or t� = +1. If t0 > �1, Best’s method will
conclude that QP1(t) is either unbounded from below or infeasible for t < t0, and,
the relevant possibility will be given. Similarly, if t� < 1, then the method will
conclude that QP1(t) is either unbounded from below or has no feasible solution
for t > t� and the relevant possibility will be stated. Table 2.1 gives the relevant
information for Example 2.1.

Having solved QP1(t), it remains to solve NP1. Using h0i and h1i from (3.1),
define the constants

1i = c0h0i +
1
2h0i

0Ch0i;

2i = c0h1i + h0i
0Ch1i + q0h0i;

3i =
1
2h1i

0Ch1i + q0h1i;

9>=
>; (3.2)

for i = 1; . . . ; �. From (3.1), (3.2) and the definition of f(t), we now have

f1(t) =

8>><
>>:
11 + 21t+ 31t

2; if t0 � t � t1;

12 + 22t+ 32t
2; if t1 � t � t2;

� � � � � �

1� + 2�t+ 3�t
2; if t��1 � t � t� :

(3.3)

This shows that f1(t) is piece-wise quadratic on � adjacent intervals. This is
illustrated in Figure 2.1(b) with � = 3; t0 = 0:5; t1 = 0:9; t2 = 2:, and t3 =
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Table 3.1. Determination of Local Minimizers for f1(t)

Case Range Conditions Local Min
of i of f(t)

1 1 � i � � � 1 2i + 23iti � 0, and, ti

2;i+1 + 23;i+1ti � 0

2 1 � i � � 3i > 0 , and, �2i=(23i)

ti�1 < �2i=(23i) < ti

3 t0 > �1, 20 + 230t0 > 0 t0

and R1(t) = ; for t < t0

4 t� <1, 2� + 23�t� < 0 t�

and R1(t) = ; for t > t�

5 1 � i � � 2i = 3i = 0 ti�1 < t < ti

1. The simple nature of f(t) allows the determination of its local minima as
summarized in Table 3.1.

Case 1 concerns points where the left derivative of f1(t) is negative and the right
derivative is positive. This possibility is illustrated in Figure 2.1(b) with t1 = :9
and t2 = 2. Case 2 corresponds to f1(t) being strictly convex on [ti�1; ti] and
the unconstrained minimum of that quadratic piece lying within the interval. Case
3 requires that t0 be finite, f(t) be increasing at t0 and that there be no feasible
solutions below t0. This is illustrated in Figure 2.1(b) for t0 = 0:5. Note that the
relevant possibility will be given by Best’s parametric QP method. Also note that
if the QP algorithm determines that QP1(t) is unbounded from below for t < t0,
then t0 is not a local minimizer for f1(t). For the right-hand end of the interval,
Case 4 is analogous to Case 3. Case 5 occurs when f(t) is constant on the open
interval (ti�1; ti), in which case any point in the interval is a local minimizer. The
end points of the interval may or may not be local minimizers. See the discussion
following Theorem 3.1.

The following result is an immediate consequence of Theorem 2.1

THEOREM 3.1. Let t�1; t
�

2; � � � ; t
�

N be obtained from (3.1), (3.2) and Table 3.1.
Let x�i 2 arg minfQP(t�i )g for i = 1; � � � ; N . Then x�i ; i = 1; � � � ; N are all
local minimizers of QP1. Moreover, if QP1 possesses a global minimizer, then it is
that x�k which gives the smallest objective function value for QP1 among all the
fx�i j i = 1; � � � ; Ng.

The formulation of Theorem 3.1 does not explicitly allow for Case 5 of Table
3.1. because it deals with particular points rather than points and intervals. If Case



88 M. J. BEST AND B. DING

5 does apply, then arg minfQP(t)g are all local minimizers of QP1. If the left
derivative of f(t) is negative at ti�1 then ti�1 is also a local minimizer of f(t) and
consequently all elements of arg minfQP(ti�1)g are local minimizers of QP1. The
analogous result holds for the right-hand end of the interval.

The information concerning whether QP1 possesses a global minimizer can be
obtained from Best’s algorithm, (3.1), (3.2) and Table 3.1. This can be summarized
as follows. When Best’s algorithm terminates with a finite t0, it also specifies that
either QP1(t) is unbounded from below for t < t0, or, R1(t) = � for t < t0. The
analogous result holds when t� is finite. Thus if R1(t) 6= � for t < t0 with t0
being finite or R1(t) 6= � for t > t� with t� being finite, then QP1 has no global
minimizer. Otherwise both

min f11 + 21t+ 31t
2
j t0 � t � t1g

and

min f1� + 2�t+ 3�t
2
j t��1 � t � t�g

have global minimizers if and only if QP1 has global minimizer.
We illustrate this procedure by applying it to an example from Floudas and

Pardalos (1990).

EXAMPLE 3.1.

QP1

minimize : 6:5x� 0:5x2 � y1 � 2y2 � 3y3 � 2y4 � y5

subject to : AX � b; 0 � X = (x; y)0; yi � 1; i = 3; 4;
y5 � 2; x 2 E1; y 2 E5;

where

b =

2
66664

16
�1
24
12

3

3
77775 and A =

2
66664

1 2 8 1 3 5
�8 �4 �2 2 4 �1

2 0:5 0:2 �3 �1 �4
0:2 2 0:1 �4 2 2

�0:1 �0:5 2 5 �5 3

3
77775 :

This problem has a known global minimizer (x�; y�) = (0; 6; 0; 1; 1; 0)0 with
optimal objective function value of �11.

Application of our algorithm to this problem confirms that the above solution
is indeed the global optimum. In addition, it also determines that the global min-
imizer is isolated and that (�x; �y) = (13:83; 0; 0; 1; 0:19; 0:12)0 is an isolated local
minimizer with objective function value �9:26. That is, the problem not only has
an isolated global minimizer, but also a previously undiscovered isolated local
minimizer.

In order to further test our algorithm, we formulated some variations of this
problem. In all cases, the constraints remained the same and only the linear part of
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Table 3.2. Objective Functions for Test Problems

g1(x; y) = �0:5x2 + 6:5x� y1 � 2y2 � 3y3 � 2y4 � y5

g2(x; y) = �0:5x2 + 6:5x� 2y2 � 3y3 � y5 + 2xy1 + 3xy2

�5xy3 � 4xy4 + 6xy5

g3(x; y) = �0:5x2 + 6:5x� 4y2 � 4y3 � y5 + 2xy1 + 3xy2

�5xy3 � 4xy4 + 6xy5

g4(x; y) = �0:5x2 + 6:5x+ 2xy1 + 3xy2 + 5xy3 � 4xy4 + 6xy5

Table 3.3. Local and Global Minima for Four Test Problems

Objective Objective Solution Points Type of Minimum
Function Value

g1(x; y) �11 (0; 6; 0; 1; 1; 0)0 global min, isolated
�9:2567 (13:83; 0; 0; 1; 0:19; 0:12)0 local min, isolated

g2(x; y) �105 (12; 0; 0; 1; 1; 0)0 global min, isolated
�5:6583 (0; 0:92; 1:33; 1; 0:84; 0)0 local min, isolated
�5:0718 (0:52; 0; 1:44; 1; 1; 0)0 local min, isolated

g3(x; y) �106 (12; 0; 0; 1; 1; 0)0 global min, isolated
�9:3166 (0; 0:92; 1:33; 1; 0:84; 0)0 local min, isolated
�8:9409 (0:5; 0; 1:45; 1; 0:97; 0)0 local min, isolated
�8:9428 (0:52; 0; 1:44; 1; 1; 0)0 local min, isolated

g4(x; y) �46:875 (12:5; 0; 0; 0; 1; 0)0 global min, isolated
1:3672 (0:625; 0; 0; 0; 1; 0)0 local min, isolated

0 (0; 1:25; 0; 0; 1; 0)0 local min, non-isolated
0 (0; 7:6; 0; 0:8; 0; 0)0 local min, non-isolated

the objective function was changed. The modified objective functions, gi(x; y); i =
1; . . . 4 are shown in Table 3.2 along with their corresponding vectors d and q. The
original Floudas and Pardalos problem corresponds to g1(x; y).

Each of the four examples was solved with d = (1; 0; 0; 0; 0; 0)0. The first exam-
ple used q = (�0:5; 0; 0; 0; 0; 0)0 and the remaining three used q = (�0:5; 2; 3;�5;
�4; 6)0. The results of applying our method to these problems are summarized in
Table 3.3. Note that the results summarized in Table 3.3 show that our method
located two non-isolated local minimizers for the fourth test problem. This shows
that although we cannot guarantee that our method will find all non-isolated local
minimizers, it still may find some, or even all.
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4. Conclusions

We have developed relationships between a given non-convex quadratic program-
ming problem QP and a derived unconstrained (but non-differentiable) quadratic
problem NP. We have established that any local minimum of NP gives a corre-
sponding local minimum of QP. Furthermore, the isolated local minimizers of both
QP and NP are in one-to-one correspondence.

For the case that the Hessian of QP has exactly one negative eigenvalue, we
have developed an algorithm to compute all isolated local minimizers and some
non-isolated local minimizers of QP. In addition, the algorithm will compute the
global minimizer of QP, provided it exists, and will provide the information that
QP is unbounded from below when that is the case. The algorithm is illustrated by
applying it to a problem from the literature and some variations of it.
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