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Abstract. We present a method which when applied to certain non-convex QP will locate the global
minimum, all isolated local minimaand some of the non-isolated |ocal minima. The method proceeds
by formulating a (multi) parametric convex QP in terms of the data of the given non-convex QP.
Based on the solution of the parametric QP, an unconstrained minimization problem is formulated.
This problem is piece-wise quadratic. A key result isthat the isolated local minimizers (including the
global minimizer) of the original non-convex problem are in one-to-one correspondence with those
of the derived unconstrained problem.

The theory isillustrated with several numerical examples. A numerical procedure is devel oped
for a special class of non-convex QP's. It is applied to a problem from the literature and verifies a
known global optimum and in addition, locates a previously unknown local minimum.

K ey words: Global optimization, parametric quadrati c programming, non-convex quadratic program.

1. Introduction
Here we consider the model non-convex quadratic programming problem
QP min{c'z + 32'Cz + 2'DQ'z | Az < b},

wherec € E*, b € E™, Aisanm x n-matrix, D and Q are n x k-matrices, C' is
asymmetric n x n positive semi-definite matrix, £ < n and x € E" isavariable.
Corresponding to QP, we consider the parametric quadratic program:

QP(t) min{c'z + 32'Cx + t'Q'z | Az < b, D'z = t},

wheret isaparameter in E*. Let R and R(t) befeasible regionsfor QP and QP(t),
respectively. Let arg min{QP(¢)} denote the set of all optimal solutionsfor QP(t).
Finally, we formulate

NP min{f(t) | t € E*},

where
£(t) = inf {¢'z + 12/Ca + #'Q'zx | x € R(t)}, if R(t) # ¢,
| oo, otherwise.

* This research was supported by the National Sciences and Engineering Research Council of
Canada under Grant A8189.
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The non-convexity of the objective function of QP stemsfromthetermz’ DQ'x.
Onemight question the generality of thismodel and suggest that the term bewritten
as ' Hz, where H is a more general symmetric matrix, perhaps satisfying some
properties. This situation has been analyzed by the authors in a companion paper,
Best and Ding (1996), where it is shown that for any symmetric matrix H having
full rank, there exist n x k-matrices @ and D satisfying H = 3[DQ' + QD']
(and so 'Hz = ' DQ'z) if and only if H has at least two nonzero eigenvalues
of opposite sign. In addition, when the required condition is satisfied a method to
construct such D and @ is given. For the purposes of this paper, we will assume
that D and () are already available.

We note that, in general, the problem of checking isolated local optimality is
NP-hard, See Murty and Kabadi (1987), and, Pardal os and Schnitger (1988).

We will organize this paper as follows. In Section 2, we will develop the
relationships between QP, QP(¢) and NP. In particular, wewill establish the one-to-
one correspondence between isolated local minimizers of QP and NP. In Section 3,
wewill specialize these results to the class of hon-convex quadratic programs with
a Hessian which has exactly one negative eigenvalue. We will give an algorithm
that can not only find a global minimizer, but can also find all isolated minimizers
and some non-isolated local minimizers.

2. The Relationships between QP, QP(t) and NP

We begin this section with asmall example problemwhich will illustrate the critical
relationship between QP and NP.

EXAMPLE 2.1.

minimize: z1z2
QP subjectto: z1 > 0.5, 22x1 + 8z, > 27,
8z1 + 2210 > 27, x> 0.5.

Here, C = 0,n = 2 and we may take D = (1,0)' and Q = (0, 1)". QP(¢) can be
written as
minimize : txo
QP(1) subjectto: z1 > 0.5, 22x1 + 8z, > 27,
8z1 + 22z > 27, x> 0.5,
r1 =1t.

The solution of QP(¢) is a piece-wise linear function of ¢ and is summarized in
Table2.1.
Examination of QP(t) with Table 2.1 gives f(t):
t(27 — 22t)/8, if 0.5 <t < 0.9,
ft) = { t(27 —8t)/22, if 0.9 <t < 2,
t/2, ift > 2.
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Table 2.1. Optimal Solution for QP(¢) for Example 2.1.

t < 0.5 05<t<09 09<t<2 t>2
no 0 1 0 1 0 1

feasible o |+t 22 o |+t 8 1|+t 0

solution B T 2 iz 2

s f(t)

.
z122 = 0.81 A

0 T T T T 7 — T ¢
0 5 9 2 0 b5 .9 2

Figure 21 (a) Example 2.1. (b) f(t) for Example 2.1.

Example2.1lisillustratedin Figures2.1(a) and (b). Figure2.1(a) showsthegiven
non-convex problem. Thefeasibleregion is shown asthe shaded area. Thelevel set
2122 = 0.81 is shown with abroken line. It is clear from the figure that there are
local minimaat (0.5, 2)" and (2, 0.5)’ and the global minimum occursat (0.9, 0.9)".
Figure 2.1(b) shows f (), a piece-wise quadratic function which by inspection, has
isolated local minimaat ¢t = 0.5, and 2 and a global minimum at ¢ = 0.9. Using
Table 2.1, we see that arg min{QP(0.5)} = (0.5,2)’ , arg min{QP(2)} = (2,0.5)’
and arg min{QP(0.9)} = (0.9,0.9)". Thus, the local (global) minima of QP and
f(t) are in one-to-one correspondence for this example. Also note that f(t) isa
piece-wise quadratic function of a single variable and so it is straightforward to
obtain itslocal and global minimizers.

Noticethatin Example 2.1, thelocal minimizersfor both QPand NP areisolated.
The requirement that the local minimizers of QP be isolated is key in obtaining
the one-to-one correspondence between such points of QP and NP. Thefinal result
will be formulated in Theorem 2.4 and will be a consequence of Theorems 2.1 -
2.3, following.

THEOREM 2.1. Let t* be a local minimizer for NP with f(¢*) > —oo. Then any

z* € arg min{QP(¢*) } isalocal minimizer for QP.
Proof. Sincet* isalocal minimizer for NP, there existsad > 0 such that

f(t) = f(#°) foranyt e Bs(t"), (2.1)
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where B (t*) = {t € EF | ||t —t*|| < 6}. Now assumeto the contrary, that thereis
anz* € arg min{QP(¢*) } whichisnot alocal minimizer for QP. Then there exists
asequence {z'} such that

dz' + 3(2) Ca' + (2') DQ'z’ < ¥ + 3(2*)'Cx* + () Q'z*,
where Az' < b, and z* — z*. Since z* € arg min{QP(¢*)},
f(t) =cdz* + %(x*)’Cm* + (%) Q'z*.
Hence
o'+ 3(2) Ca' + (2°) DQ's" < f(t*). (2.2
Sincez’ — z*, D'z" — D'z* = t*. Thus, thereisan M > 0 such that
D'z € Bs(t*), wheneveri > M. (2.3)
Lett’ = D'z’ fori > M. Then
f(t") = inf{dz + 32'Cx + (#1)/Q'z | Az < b, D'z = '}
< dr' + (=)' Cat + () Q'x? (since Az’ < b, D'z" = t7)
= dz' + 3(2%)Ca’ + (2°)' DQ'z" < f(t*) (from (2.2)).
But from (2.1) and (2.3), we have f(t') > f(t*), acontradiction. The assumption
that there is an z* € arg min{QP(¢*)} which is not a local minimizer for QP

leads to a contradiction and is therefore false. The proof of the theorem is thus
complete. O

If t* isanisolated local minimizer of f on E*, we havethefollowing further result.

THEOREM 2.2. If t* isanisolated local minimizer for f on EF with f(t*) > —oo
and arg min{QP(¢*)} is the singleton point {z*}, then z* is an isolated local
minimizer for QP.

Proof. From Theorem 2.1, z* isalocal minimizer for QP. If z* isnot anisolated
local minimizer for QP, thereexist asequence {z'} C R, z* — z* and ' # z* for
al i suchthat 'z’ + 3(27)'Ca® + (2%) DQ'z" = dz* + §(2%)'Ca* + (2*)' DQ'z".
Lett* = D'z’. Thent’ — t* and f(t') < f(t*). Since arg min{QP(t*)} = {z*}
and 2" # «* for al 4, t* # t* for all 4. This contradicts that ¢* is an isolated local
minimizer for NP. The proof of the theorem is thus complete. O

Theorem 2.2 isillustrated in Example 2.1 where each of the three local minimizers
for f(t) areisolated, their corresponding sets, arg min{QP(¢) }, are singletons and
each such point is an isolated local minimizer for QP. The following example
illustrates Theorem 2.1 and in addition, shows that the condition arg min{ QP(¢*) }
be asingle point cannot, in general, be removed from Theorem 2.2.



GLOBAL AND LOCAL QUADRATIC MINIMIZATION 81
EXAMPLE 2.2.
QP min{—%xl—%xz—i—xlxz | z1 > %,% <z < %}

Herewetake C = 0, n = 2, D = (1,0) and Q = (0,1)". Then D'z = z1,
Q'z = z, and QP(t) becomes

. 1
QP() min{—Zt+(t—3)z2) [ t> 3, 5<@2 <3},

from which f(¢) is derived as:

1 3 1
() = gt — 15 ift >3,
+o00, otherwise.

The situation isillustrated in Figures 2.2(a) and 2.2(b). The feasible region for
QPisshown asthe shaded areain Figure 2.2(a). Itisclear that t* = % isanisolated
local minimizer for f on E. Indeed, it is also the global minimizer. See Figure
2.2(b). However, arg min{QP(t*)} = {(},z2)' | 3 < > < 1} and by Theorem
2.1, each one of these pointsisalocal (indeed, global) minimizer for QP. Theseare
shown by the darkened line in Figure 2.2(a). Clearly, none of the local minimizers
for QPareisolated. Thusthe condition arg min{ QP(¢*) } beasingletonisnecessary
in Theorem 2.2.

s f®)
Y27 tocal { R 1/8 -
ag| minima | [l 0 t
1/4 T T T I 1/2 3/2
0 1/2 1 ~1/8
Figure 2.2. (a) Example 2.2. (b) f(t) for Example 2.2.
EXAMPLE 2.3.
QP min{—za1 — 322 + z122 | 21> 3, 0 < 2 < 3}

Herewetake C = 0,n = 2, D = (1,0) and @ = (0,1)’, Then D'z = x4,
Q'z = z, and QP(t) becomes

QP(Y min{—3t + (t — $)z2 [t >3, 0< @ < 3},
fromwhich f(¢) isderived as:

1. 1
£(t) = gt ift >3,
+o00, otherwise.
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Figure 2.3. (a) Example 2.3. (b) f(t) for Example 2.3.

The situation isillustrated in Figures 2.3(a) and 2.3(b).
Observe that

arg mm{QP(%)} = { (%,:L‘z)’ | 0<z, < }7

andfor¢ > 3, arg min{QP(t)} = (¢,0)". Also observethat {(3,22)' | < 72 <
3} arelocal optimal solutionsfor QP. In particular, z* = (3, 3)’ isalocal optimizer
for QPbut t* = D'z* = % isnot alocal minimizer for f on EL. Indeed f does not
possess alocal minimizer on EL.

Example 2.3 shows that a one-to-one correspondence between local minima
of QP and f(¢) will not hold without some restrictions. The key requirement in
establishing the correspondence is that corresponding local minimizers for QP,
QP(t) and f(t) should each be isolated. This will be established subsequently.
First we need the following lemma.

Nl

LEMMA 2.1. Let z* be an isolated local minimizer for QP and let t* = D'z*. Let
{#} beany sequencewith ¢ — * and let z* € arg min{QP(#*)}. If thereexistsan
M > Osuchthat f(#') < M for all 4, then {z*} is bounded.

Proof. Since z* isan isolated local minimizer for QP, there existsaé > 0 such
that

C,!L"*+ %(!E*)IC$*+(!E*),DQI$* < CI!E-|-%!L",C!E+!L",DQI!L" (24)
forany z € (Bs(z*) N R) \ {z*}. So,
dz* + %(x*)’C:v* +(t)'Q'x* < dx + %x’Cm + (t*)Q'x

forany = € (Bs(z*) N R(t*)) \ {z*}. Since 'z + 32/Cz + (t*)'Q'x is convex,
we have

da* + (a*) O + () Q'a* < duw + 3’ Cr + (1) Q'a (25)

forany z € R(t*)\ {z*}. Hencearg min{QP(¢*)} = {«*}. Thisimpliesthat there
does not exist a nonzero vector s satisfying the following conditions

As <0, D's =0, (2.6)

(c+Qt*)'s <0, (2.7
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Cs =0. (2.8)

By Theorem 2.1 of Best and Ding (1995), f is lower semi-continuous at ¢*.
Therefore for any v > O thereexistsan e > 0 suchthat f(t) > f(t*) — ~ for any
t € B.(t*). Since t' — t*, there existsan N > 0 such that ¢ € B.(¢*) for all
i > N. S0,

fE) =y < f#y <M (2.9)

forall i > N.Now assumethat onthecontrary, {=*} isunbounded, then {z*/||z*||}
has a convergent subsequence. Without loss of generality, let

i

lim —— = sand lim [|"|| = +o0. (2.10)
i 2] it

From f(t) = ¢z’ + (27)'C2’ + (¢')'Q'2", (2.9) and (2.10), we have

%3’03 = lim;& 00 f(ti)z =0

(B

and

(c+Qt*)s + lim @) Ca’ _ lim f) _

i—oo 2|zt isoo ||zt

IAY )
Cs=0and (c+ Qt*)s =— lim m
i—00 2||:UZ||

From Az? < b and D'z* = t*, we have As < 0 and D's = 0. Thus we have
exhibited a non-zero s satisfying (2.6)-(2.8). This is a contradiction and the proof
of the lemmais complete. O

THEOREM 2.3. If z* is an isolated local minimizer for QP, then t* = D'z* is
an isolated local minimizer for NP, f(t*) = 'z*+3(z*)'Cz*+ (¢*)'Q'z* and
arg min{QP(t*)} = {z"}.

Proof. Asthe proof of Lemma 2.1, we have (2.4), (2.5) and f(t) > f(t*) — v
forany t € Be(t*). Thus,

f(t*) =% + () Co* + (+*)'Q'z* and arg min{QP(¢*)} = {z*}.
Now assumeto the contrary, that ¢* is not an isolated local minimizer for NP. Then
there exist two sequences {z'} and {#'} with ' = D'z", t* — t*, 1 € B(t*) and
z' € R\ Bs(z*) such that

dz' + 3z Cr' + (1) Q'a’ = f(#1) < f(t7).
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By Lemma2.1, {z'} isbounded, so there exists aconvergent subsequence. Without
loss of generality, let 2 — 20, Then 20 # z*, t* = D'z°, Az° < band

C/x0+ %(x0)10x0+ (t*)'Q'xO < f(t*)
This contradicts (2.5). The proof of the theorem is thus complete. O

Combining Theorem 2.2 and Theorem 2.3, we have the following result.

THEOREM 2.4. A point z* is an isolated local minimizer for QP if and only if
t* = D'z* is an isolated local minimizer of NP, f(¢*) = ¢'z* + 3(z*)'Cz*+
(t*)'Q'z* and arg min{QP(¢*)} = {z*}.

REMARK 2.1. From Theorem 2.1 and Theorem 2.4, we know that f will keep all
of the critical information concerning isolated local minimizers of QP and some of
the local minimizers of QP. Thusif we canlocate all local minimizers of f we will
obtain all isolated local minimizers and some local minimizers of QP.

Although the one-to-one correspondence between local minimizers of QP and
NP requires the condition of isolated local minima, this condition is not required
for global minima as given in Theorem 2.5 below. The proof of this result can be
obtained from definitions directly.

THEOREM 25. A point t* € EF with f(t*) > —oo is a global minimizer of
NP if and only if QP has a global minimizer »* such that D'z* = t*, f(t*) =
't + %(x*)l Cx* + (t*)IQ!L"*

We complete this section by showing how to recognize whether alocal minimizer
is an isolated local minimizer. Suppose that we know ¢* is an isolated local min-
imizer and we want to know whether corresponding point =* is also an isolated
local minimizer. In doing so, we need only verify that arg min{QP(¢*)} = {z*}. If
C is positive definite, then QP(¢) is strictly convex. In this case, z* is necessarily
uniquely determined and consequently arg min{ QP(¢*)} = {z*}. Otherwise, since
QP(t*) isconvex, we may assumethat =* is computed by some quadratic program-
ming algorithm and (u,v) = (u1,- -, um,v1, -, vg) IS the associated vector of
multipliers, wherew and v correspond Az < band D'x = t*, respectively. Now by
Theorem 4.14 of Best and Ritter (to appear), arg min{QP(¢*)} can be represented
by the set of 2 which satisfy

D'z = t*, Cx = Ca,
aix = b;, foraliwithl <i <m, andu; > 0,

Z (2.11)
atr < b;, foraliwithl <i <m, andu; = 0.

Let 7 ={i | 1<i<m, az* =b;} and A; be asub matrix of A induced by
i-th row of A for i € I. If rank([D, C, A%]) < n, then arg min{QP(¢*)} is not
asingleton, i.e.; z* is not an isolated local minimizer. In this case, an alternative
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local minimizer can be computed easily from the null spaceof [D, C, A}]'. In fact,
forany y € E", if [D,C, A}]'y = Owith y # O, there is a nonzero number «
such that z* + ay satisfies (2.11), i.e.; z* + ay is an aternate local minimizer.
If rank([D, C, A}]) = n, we need to consider the following linear programming
problem:

uo= min{ Zai'x | (2.11) }
icl
If v = >;cr bi then arg min{QP(¢*)} is a singleton, and «* is an isolated local
minimizer. Otherwise, z* isnot an isolated local minimizer and an optimal solution
of the linear programming problem is an aternative local minimizer.

In next section, we are going to discuss some applications of the results estab-
lished in this section.

3. TheCaseof a Single Negative Eigenvalue (k = 1)

In this section we consider our model problemwith D and @ being n-dimensional
vectors; i.e., k = 1. To emphasize this we replace D and ) with d and ¢, respec-
tively. The model problem QP and the derived problems QP(¢) and NP become

QP; min{c'z + 32'Cz + (d'z)(¢'z) | Az < b},

wherec € E", b € E™, A isanm x n-matrix, d and ¢ € E", C is a symmetric
n X n positive semi-definite matrix, and z € E™. QP(t) becomes

QP4 (1) min{c'z + %x’C:v +tq'z | Az < b,d'x =t},

where ¢ is a scalar parameter. Let R; and R;(t) be feasible regions for QP; and
QPy(t), respectively. Let arg min{QP,(¢)} denote the set of all optimal solutions
for QP (). Finaly, we formulate

NP, min{ f1(t) | t € E},

where
fi(t) = {

and we have used the subscript "1" throughout the above to emphasize that k£ = 1.

If QP; were written with a more general Hessian matrix H, rather than C' +
%(dq’ + qd') then the resulting problem could be transformed into one having a
Hessian matrix of the latter form provided H had exactly one negative eigenvalue
(hence thetitle of this section). Details of thistransformation are given in Best and
Ding (1996).

The problem QP; has been shown to be NP-hard by Pardalos and Vavasis
(1991). Konno et al. (1991) proposed a solution method for a variation of QP; for

inf {c'z + 32'Cx + tg'z | © € Ra(t)}, if Ru(t) # ¢,
+o00, otherwise,
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which the constraints were equalities and non-negativity constraints. The method
used a parametric form of the simplex algorithm and was designed solely to find
a globa minimizer. In this section, we will aso develop a method to solve QP;.
However, in contrast to the method of Konno, our method will locate a global
minimizer (if oneexists), all isolated local minimizers and some non-isolated local
minimizers. Indeed, even if QP; does not possess a global minimizer our method
will locate all isolated local minimizers and some non-isolated local minimizers.
Moreover, we will show that isolated local minimizers can be distinguished from
non-isolated local minimizers by solving alinear programming problem.

Note that QP; (¢) is aconvex parametric quadratic programming problem, with
the parameter being a scalar. Note also that the parameter ¢ occurs in both the
linear part of the objective function as well as the right hand-side of a constraint.
QP4 () must be solved for all possible t. An appropriate method to use is that of
Best (1996). Best’'s method allows explicitly for a parameter in both the linear part
of the objective function and the right hand-side of the constraints. Also, it allows
for the possibility that the Hessian of the parametric QP is positive semi-definite,
rather than just positive definite. In addition, it supplies critical information as to
the status of QP () at the end points of the parametric interval.

Applying Best's method to QP;(¢) will produce numbers to, 1, --,%, and
n-vectors hg;, hy;, i =1,...,v satisfying

z;(t) = hoi + thy (3.1
is optimal for QP (¢) for al t with¢; 1 < ¢t < t; andforal: = 1,...v. Itis
possible to have tp = —oo and/or ¢, = +oo. If tg > —oo, Best's method will

concludethat QP () is either unbounded from below or infeasiblefor ¢ < ¢, and,
the relevant possibility will be given. Similarly, if ¢, < oo, then the method will
conclude that QP; () is either unbounded from below or has no feasible solution
for t > t, and the relevant possibility will be stated. Table 2.1 gives the relevant
information for Example 2.1.

Having solved QP;(t), it remains to solve NP;. Using hg; and hy; from (3.1),
define the constants

Y1 = c'ho; + 3hoi' Cho;,
Yoi = ¢'hai + hoi' Ch1; + ¢'hoi, (32
Y3 = 3h1'Chy; + ¢'ha,

fori =1,...,v. From (3.1), (3.2) and the definition of f(¢), we now have

Y11 + vt + y;t?,  if to <t <ty

+ Yoot + yaot?, if t1 <t <o,
fl(t) — Y12 722 . Y32 1 _ . > 02 (33)
Y + Yot + yaut?, if ty_1 <t <t

This shows that f1(t) is piece-wise quadratic on v adjacent intervals. This is
illustrated in Figure 2.1(b) with v = 3t = 0.5, t1 = 0.9, t, = 2., and t3 =
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Table 3.1. Determination of Loca Minimizersfor fi(t)

Case Range Conditions Loca Min
of 4 of f(t)
1 1<i<v-1 ~Y2i + 27y3it; < 0, and, t;

Y2,i+1 + 273,i+1ti > 0

2 1<i<v y3i >0, and, —72i/(2ysi)
tic1 < —v2i/(2y3) <

3 to > —00, Y20 + 2y30to > 0 to
and Ry(t) = 0 fort < to

4 tu < 00, Yov + 2’}/3ytu < 0 tu
and Ry(t) = B fort > ¢,

5 1<i:<v Y2i =3 = 0 tic1 <t<t;

oo. The simple nature of f(¢) alows the determination of its local minima as
summarized in Table 3.1.

Case 1 concernspointswheretheleft derivativeof f1(¢) isnegativeand theright
derivative is positive. This possibility is illustrated in Figure 2.1(b) with £, = .9
and t, = 2. Case 2 corresponds to f1(¢) being strictly convex on [t;_1,¢;] and
the unconstrained minimum of that quadratic piece lying within the interval. Case
3 requires that ¢ be finite, f(¢) be increasing at #o and that there be no feasible
solutions below #o. Thisisillustrated in Figure 2.1(b) for o = 0.5. Note that the
relevant possibility will be given by Best’s parametric QP method. Also note that
if the QP algorithm determines that QP; (¢) is unbounded from below for ¢ < to,
then ¢o is not alocal minimizer for f1(¢). For the right-hand end of the interval,
Case 4 is analogous to Case 3. Case 5 occurs when f(t) is constant on the open
interval (¢;—1,;), in which case any point in theinterval is alocal minimizer. The
end points of the interval may or may not be local minimizers. See the discussion
following Theorem 3.1.

The following result is an immediate consegquence of Theorem 2.1

THEOREM 3.1. Let ¢3,t5,---, ¢} be obtained from (3.1), (3.2) and Table 3.1.
Let zf € agmin{QP(¢;)} for ¢+ = 1,---,N. Then z},s = 1,---, N are all
local minimizers of QP;. Moreover, if QP; possessesa global minimizer, then it is
that z; which gives the smallest objective function value for QP; among all the
{z;|i=1,---,N}.

The formulation of Theorem 3.1 does not explicitly allow for Case 5 of Table
3.1. becauseit deals with particular points rather than points and intervals. If Case
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5 does apply, then arg min{QP(¢)} are al local minimizers of QP;. If the left
derivative of f(t) isnegativeat ¢;_1 thent;_4 isalso alocal minimizer of f(¢) and
consequently all elements of arg min{ QP(#;_1) } arelocal minimizers of QP;. The
analogous result holds for the right-hand end of theinterval.

The information concerning whether QP; possesses a global minimizer can be
obtained from Best’s algorithm, (3.1), (3.2) and Table 3.1. This can be summarized
asfollows. When Best’s agorithm terminates with afinite 4o, it also specifies that
either QP (¢) is unbounded from below for ¢ < ¢, or, R1(t) = ¢ for t < to. The
analogous result holds when ¢, is finite. Thus if R1(t) # ¢ for ¢t < to with ¢
being finite or R1(t) # ¢ for t > t, with ¢, being finite, then QP; has no global
minimizer. Otherwise both

min {y11 + va1t + ya1t? | to < t < t1}
and
min {y, + yaut + 3,12 | t, 1 <t <t,}

have global minimizersif and only if QP; has global minimizer.
We illustrate this procedure by applying it to an example from Floudas and
Pardal os (1990).

EXAMPLE 3.1.

minimize : 6.5z — 0.52% — y; — 2y>» — 3y3 — 2ya — s
QP; subjectto: AX <b, 0< X = (z,y)", v; <1, i=3,4,
ysgzaxe E17 (AS E57

where
16 1 2 8 1 3 5
-1 -8 —4-2 2 4-1
b=| 24| andA = 2 0502 -3-1-4
12 0.2 201 -4 2 2
3 -01-05 2 5-5 3

This problem has a known global minimizer (z*,y*) = (0,6,0,1,1,0)" with
optimal objective function value of —11.

Application of our algorithm to this problem confirms that the above solution
is indeed the global optimum. In addition, it also determines that the global min-
imizer isisolated and that (z,7) = (13.83,0,0,1,0.19,0.12)" is an isolated local
minimizer with objective function value —9.26. That is, the problem not only has
an isolated global minimizer, but also a previously undiscovered isolated local
minimizer.

In order to further test our algorithm, we formulated some variations of this
problem. In all cases, the constraints remained the same and only the linear part of
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Table 3.2. Objective Functions for Test Problems

qi(z,y) = —052>4+ 6.5z —y1 — 2y2 — 3ys — 2ya — ys

g2(z,y) = —0.52% 4 6.5z — 2y — 3ys — ys + 2zy1 + 3z
—5zys — 4dxys + 6rys

g3(z,y) = —0.52% 4 6.5z — dyp — dys — ys + 2xy1 + 3z
—5rys — dxys + 6rys

ga(z,y) = —0.52%+ 6.5z + 2zy1 + 3zy2 + 5zys — dzys + 6xys

Table 3.3. Local and Global Minimafor Four Test Problems

Objective  Objective Solution Points Type of Minimum
Function Value

g1(z,y) -11 (0,6,0,1,1,0) global min, isolated

—9.2567 (13.83,0,0,1,0.19,0.12)’ local min, isolated

g2(z,y) —105 (12,0,0,1,1,0) global min, isolated

—56583  (0,0.92,1.33,1,0.84,0) local min, isolated

—5.0718 (0.52,0,1.44,1,1,0)' local min, isolated

g3(z,y) —106 (12,0,0,1,1,0) global min, isolated

—9.3166  (0,0.92,1.33,1,0.84,0)' local min, isolated

—8.9409 (05,0, 1.45, 1,0.97, 0)’ local min, isolated

—8.9428 (0.52,0,1.44,1,1,0)' local min, isolated

ga(z,y) —46.875 (12.5,0,0,0,1,0) global min, isolated

1.3672 (0.625,0,0,0,1,0) local min, isolated

0 (0,1.25,0,0,1,0)" loca min, non-isolated

0 (0,7.6,0,0.8,0,0) loca min, non-isolated

the objectivefunction was changed. Themodified objectivefunctions, g;(z, y), i =
1,...4areshownin Table 3.2 along with their corresponding vectorsd and q. The
origina Floudas and Pardal os problem correspondsto g1 (x, ).

Each of the four exampleswas solvedwithd = (1, 0,0, 0,0, 0)'. Thefirst exam-
pleusedq = (—0.5,0,0,0, 0,0)" andtheremaining threeused g = (—0.5, 2, 3, -5,
—4,6)’. The results of applying our method to these problems are summarized in
Table 3.3. Note that the results summarized in Table 3.3 show that our method
located two non-isolated local minimizers for the fourth test problem. This shows
that although we cannot guarantee that our method will find all non-isolated local
minimizers, it still may find some, or even all.
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4, Conclusions

We have devel oped rel ationships between a given non-convex quadratic program-
ming problem QP and a derived unconstrained (but non-differentiable) quadratic
problem NP. We have established that any local minimum of NP gives a corre-
sponding local minimum of QP. Furthermore, the isolated local minimizers of both
QP and NP are in one-to-one correspondence.

For the case that the Hessian of QP has exactly one negative eigenvalue, we
have developed an algorithm to compute all isolated local minimizers and some
non-isolated local minimizers of QP. In addition, the algorithm will compute the
globa minimizer of QP, provided it exists, and will provide the information that
QP is unbounded from below when that isthe case. The algorithm isillustrated by
applying it to a problem from the literature and some variations of it.
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